Correction

NSI - 2021 Étranger Jour 2 (21-NSIJ2G11)

Exercice 3 - Codage XOR

1. Conversion de 89₍₁₀₎ en binaire :

$2^6 = 64$	$2^5 = 32$	$2^4 = 16$	$2^3 = 8$	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$
89 – 64 = 25	25	25 – 16 = 9	9 – 8 = 1	1	1	1-1=0
1	0	1	1	0	0	1

Remarque : On parle plutôt de « chiffrage » que de « cryptage ». Seule la notion de décryptage a un sens puisque qu'elle consiste à décrypter un code sans en connaître la clé. On parle de « chiffrage » puisque la clé est forcément connue au moment du chiffrage, on ne peut pas crypter sans connaître la clé de chiffrement.

```
4.
def generer_cle(mot, n):
    """ Répète le mot jusqu'à obtenir une chaîne de n caractère."""
    cle = ""
    i = 0
    while len(cle) < n:
        cle += mot[i % len(mot)] # la clé peut être plus longue que n
        i += 1
    return cle</pre>
```

5.

$\boldsymbol{E_1}$	E_2	$E_1 \oplus E_2$	$(E_1 \oplus E_2) \oplus E_2$
0	0	0	0
0	1	1	0
1	0	1	1
1	1	0	1

Pour décoder un message codé par cette méthode, il suffit d'appliquer la même opération que celle réalisée lors du codage, c'est-à-dire l'opération XOR bit à bit pour chaque lettre du message codé et la clé.